11 research outputs found

    Design and Fabrication of Acoustic Wave Actuated Microgenerator for Portable Electronic Devices

    Full text link
    The past few years have seen an increasing focus on energy harvesting issue, including power supply for portable electric devices. Utilize scavenging ambient energy from the environment could eliminate the need for batteries and increase portable device lifetimes indefinitely. In addition, through MEMS technology fabricated micro-generator could easy integrate with these small or portable devices. Several different ambient sources, including solar, vibration and temperature effect, have already exploited [1-3]. Each energy source should be used in suitable environment, therefore to produce maximum efficiency. In this paper, we present an acoustic wave actuated micro-generator for power system by using the energy of acoustic waves, such as the sound from human voices or speakerphone, to actuate a MEMS-type electromagnetic transducer. This provides a longer device lifetime and greater power system convenience. Moreover, it is convenient to integrate MEMS-based microgenerators with small or porta le devicesComment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    High Density out-of-Plane Microprobe Array

    Get PDF
    MEMS technology has been developed rapidly in the last few years. More and more special micro structures were discussed in several publications. However, all of the structures were produced by consist of the three fundamental structures, which included bridge, cantilever and membrane structures. Even the more complex structures were no exception. The cantilever with the property of simple design and easy fabrication among three kinds of fundamental structure, therefore, it was popular used in the design of MEMS device.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    DESIGN AND FABRICATION OF ACOUSTIC WAVE ACTUATED MICRO-GENERATOR

    Get PDF
    The past few years have seen an increasing focus on energy harvesting issue, including power supply for portable electric devices. Utilize scavenging ambient energy from the environment could eliminate the need for batteries and increase portable device lifetimes indefinitely. In addition, through MEMS technology fabricated micro-generator could easy integrate with these small or portable devices. Several different ambient sources, including solar, vibration and temperature effect, have already exploited [1-3]. Each energy source should be used in suitable environment, therefore to produce maximum efficiency. In this paper, we present an acoustic wave actuated micro-generator for power system by using the energy of acoustic waves, such as the sound from human voices or speakerphone, to actuate a MEMS-type electromagnetic transducer. This provides a longer device lifetime and greater power system convenience. Moreover, it is convenient to integrate MEMS-based microgenerators with small or porta le device

    Measurement of microstructure in micro electro mechanical systems using optical interferometric microscope

    No full text
    641-649<span style="mso-fareast-font-family: DFKai-SB" lang="EN-GB">An automatic measurement system for micro electro mechanical element with optical interferometric microscope is presented in the paper. The system introduces a novel method to calculate the central dark fringe (intensity minimum) and central bright fringe (intensity maximum) in the image. The changing of height in asymmetric micro-structure, based on the phase definition of interference fringe can be calculated. Interferometric image information is derived through image processing method, and innovated contour line algorithm is used to build up micro-structure 3D profile. In the experiments, the total processing time for five parts of element could be reduced to less than 5 s and the system error is less than 0.02 μm. </span

    Optically Driven Mobile Integrated Micro-Tools for a Lab-on-a-Chip

    No full text
    This study proposes an optically driven complex micromachine with an Archimedes microscrew as the mechanical power, a sphere as a coupler, and three knives as the mechanical tools. The micromachine is fabricated by two-photon polymerization and is portably driven by optical tweezers. Because the microscrew can be optically trapped and rotates spontaneously, it provides driving power for the complex micro-tools. In other words, when a laser beam focuses on the micromachine, the microscrew is trapped toward the focus point and simultaneously rotates. A demonstration showed that the integrated micromachines are grasped by the optical tweezers and rotated by the Archimedes screw. The rotation efficiencies of the microrotors with and without knives are 1.9 rpm/mW and 13.5 rpm/mW, respectively. The micromachine can also be portably dragged along planed routes. Such Archimedes screw-based optically driven complex mechanical micro-tools enable rotation similar to moving machines or mixers, which could contribute to applications for a biological microfluidic chip or a lab-on-a-chip

    HBV infection increases the risk of macular degeneration: the roles of HBx-mediated sensitization of retinal pigment epithelial cells to UV and blue light irradiation

    No full text
    Abstract Background Hepatitis B virus (HBV) infection is strongly associated with hepatocellular carcinoma due to the main pathogenic X protein of HBV (HBx). Whether HBV infection and the HBx protein could result in macular degeneration (MD) is not known. The aim of this study is to assess the association and underlying mechanisms between HBV infection and MD. Methods The National Health Research Institutes in Taiwan built a large database, the National Health Insurance Research Database (NHIRD), which includes the claims data from the Taiwan National Health Insurance (NHI) program. The Taiwan NHI is a single-payer, compulsory health insurance program for Taiwan citizens. The data for the present study were derived from the Longitudinal Health Insurance Database, which contains the claims data of 1 million insured people within the NHIRD, including beneficiary registration, inpatient and outpatient files, drug use, and other medical services. In this study, we first investigated the association of HBV infection and the risk of MD by a population-based cohorts study enrolling 39,796 HBV-infected patients and 159,184 non-HBV-infected patients. Results After adjustment of age, sex, and comorbidities, the risk of MD was significantly higher in the HBV-infected cohort than in the non-HBV-infected cohort (adjusted HR = 1.31; 95% CI = 1.17–1.46). In vitro, we provided evidence to demonstrate that overexpression of HBx in the human retinal pigment epithelial (RPE) cell line, ARPE19, significantly reduced cell viability and clonogenic survival upon UV and blue light irradiation. By gene microarray analysis, we further showed that almost all genes in DNA repair pathways including base excision repair, nucleotide excision repair, mismatch repair, and homologous recombination were significantly down-regulated in the UV-induced cell death of HBx-transfected ARPE19 cells. Conclusions The HBx protein may sensitize RPE cells to UV and blue light irradiation and increase the risk of HBV-infection-associated MD through down-regulation of multiple DNA repair pathways
    corecore